BINARY RELATIONS ON SETS

Link to: physicspages home page.

To leave a comment or report an error, please use the auxiliary blog and include the title or URL of this post in your comment.

Post date: 29 July 2025.

Given two sets A and B, the Cartesian product $A \times B$ of these sets is the set of ordered pairs of elements of A and B where the first element of the pair is from A and the second is from B. For example

$$A = \{1, 2, 3\}$$

$$B = \{3, 5\}$$
(1)

then

$$A \times B = [(1,3), (1,5), (2,3), (2,5), (3,3), (3,5)] \tag{2}$$

If we consider the Cartesian product $A \times A$ of a set with itself, then we can define a *binary relation* \mathcal{R} on A as a subset of $A \times A$. Thus with

$$A \times A = \{(1,1), (1,2), (1,3), (2,1), (2,2), (2,3), (3,1), (3,2), (3,3)\}$$
(3

the Cartesian product contains $3^2 = 9$ elements. A relation \mathcal{R} on A can contain any subset of these 9 elements. Since each element may or may not be included in \mathcal{R} , there are a total of $2^9 = 512$ distinct relations on A. Note that the empty set \emptyset is a relation on any set.

Despite the normal English meaning of the word 'relation', there doesn't have to be any specific relationship between the members of the ordered pairs in \mathcal{R} . However, in practical applications of relations, it's more usual to define relations where there is some actual relation between the elements. For example, we might define a relation \mathcal{R} on the set \mathbb{R} of real numbers as

$$\mathcal{R} = \{(x,y) \in \mathbb{R}^2 : x^2 + y^2 = 1\}$$
 (4)

Here, \mathbb{R}^2 means the Cartesian product of the real number set with itself, so that $\mathbb{R}^2 = \mathbb{R} \times \mathbb{R}$. The elements of the ordered pair (x, y) are related by the equation $x^2 + y^2 = 1$, so that they lie on the unit circle.

PROPERTIES OF RELATIONS ON SETS

We now consider the classification of types of relations on a set A. The relation \mathcal{R} is:

• Reflexive, if $(a, a) \in \mathcal{R}$ for every $a \in A$.

- Symmetric, if for all $a, b \in A$, $(a, b) \in \mathcal{R} \Rightarrow (b, a) \in \mathcal{R}$. That is, every occurrence of an ordered pair must have another ordered pair with the elements swapped.
- Antisymmetric, if for all $a, b \in A$, $(a, b) \in \mathcal{R} \land (b, a) \in \mathcal{R} \Rightarrow a = b$. (The symbol \land stands for the logical 'and'.) That is, the only time both (a, b) and (b, a) appear in \mathcal{R} is when a = b.
- Transitive, if for all $a, b, c \in A$, $(a, b) \in \mathcal{R} \land (b, c) \in \mathcal{R} \Rightarrow (a, c) \in \mathcal{R}$.
- Connex, if for all $a, b \in A$, either $(a, b) \in \mathcal{R}$ or $(b, a) \in \mathcal{R}$ (or both). In particular, a connex relation requires $(a, a) \in \mathcal{R}$ for all $a \in A$, so a connex relation is also reflexive.

Example 1. Consider the relation

$$\mathcal{R} = \left\{ (x, y) \in \mathbb{Z}^2 : x + y < 5 \right\} \tag{5}$$

The set \mathbb{Z} is the set of integers. The relation is not reflexive since there are many pairs for which $x+x\geq 5$. It is symmetric, since if x+y<5, then y+x<5. This also implies that it is not antisymmetric. It is not transitive, since $(3,0)\in \mathcal{R}$ and $(0,4)\in \mathcal{R}$, but $(3,4)\notin \mathcal{R}$. Since \mathcal{R} is not reflexive, it is not a connex relation.

Example 2. Consider the relation

$$\mathcal{T} = \left\{ (x, y) \in \mathbb{N}^2 : x + y > 1 \right\} \tag{6}$$

The set $\mathbb N$ is the set of positive integers. Thus x+y>1 for all values of x and y. In particular, x+x>1 for all $x\in\mathbb N$, so $\mathcal T$ is reflexive. It is also symmetric, since x+y>1 and y+x>1 are both true. It is not antisymmetric, since x+y>1 and y+x>1 are both true for $x\neq y$. It is transitive, since if x+y>1 and y+z>1, then x+z>1 as well. Since $(x,y)\in\mathcal T$ for all x and y, it is a connex relation.

Example 3. Consider the relation

$$\mathcal{V} = \left\{ (x, y) \in \mathbb{Z}^2 : x + y \text{ is even} \right\}$$
 (7)

Since x+x=2x is always even, the set is reflexive. It is symmetric since x+y=y+x, so if one is even, so is the other. It is not antisymmetric, since (x,y) and (y,x) are in $\mathcal V$ for many values where $x\neq y$. To see if it's transitive, consider the possibilities. If x+y is even, then either x and y are both even, or they are both odd. Thus if $(x,y)\in \mathcal V$ and $(y,z)\in \mathcal V$, then either all of x,y and z are even or they are all odd. Therefore both x and z must be either both even or both odd, so $(x,z)\in \mathcal V$, and the relation is

transitive. It is not connex, since $(x,y) \notin \mathcal{V}$ and $(y,x) \notin \mathcal{V}$ if x is even and y is odd.

PINGBACKS

Pingback: Equivalence and order relations on sets

Pingback: Functions as relations on sets